A review on arbitrarily regular conforming virtual element methods for second- and higher-order elliptic partial differential equations
نویسندگان
چکیده
The virtual element method is well suited to the formulation of arbitrarily regular Galerkin approximations elliptic partial differential equations order [Formula: see text], for any integer text]. In fact, paradigm provides a very effective design framework conforming, finite dimensional subspaces text] being computational domain and another suitable number. this review, we first present an abstract setting such highly discuss mathematical details how can build conforming approximation spaces with global high-order regularity on Then, illustrate specific examples in case second- fourth-order equations, that correspond cases respectively. Finally, investigate numerically effect properties highly-regular results from different choices degree continuity underlying stabilization strategies may impact convergence.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Conforming and Nonconforming Virtual Element Methods for Elliptic Problems
We present, in a unified framework, new conforming and nonconforming Virtual Element Methods (VEM) for general second order elliptic problems in two and three dimensions. The differential operator is split into its symmetric and non-symmetric parts and conditions for stability and accuracy on their discrete counterparts are established. These conditions are shown to lead to optimal H1and L2-err...
متن کاملFinite element methods for semilinear elliptic stochastic partial differential equations
We study finite element methods for semilinear stochastic partial differential equations. Error estimates are established. Numerical examples are also presented to examine our theoretical results. Mathematics Subject Classification (2000) 65N30 · 65N15 · 65C30 · 60H15
متن کاملVariational Approximation of Flux in Conforming Finite Element Methods for Elliptic Partial Differential Equations: a Model Problem
متن کامل
A Higher Order Finite Element Method for Partial Differential Equations on Surfaces
A new higher order finite element method for elliptic partial differential equations on a stationary smooth surface Γ is introduced and analyzed. We assume Γ is characterized as the zero level of a level set function φ and only a finite element approximation φh (of degree k ≥ 1) of φ is known. For the discretization of the partial differential equation, finite elements (of degree m ≥ 1) on a pi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Models and Methods in Applied Sciences
سال: 2021
ISSN: ['0218-2025', '1793-6314', '1793-4060']
DOI: https://doi.org/10.1142/s0218202521500627